Lo Studio di Wolf, Bauer e Knolle

Il titolo della ricerca suggerisce un importante lavoro di monitoraggio a lungo termine condotto da A. Wolf, S. Bauer e F. Knolle sul sistema carsico dell’Eiskapelle nelle Alpi tedesche, con particolare focus su un campo di ghiaccio firn monitorato per 33 anni.

Contesto delle Grotte di Ghiaccio Alpine

Le grotte di ghiaccio alpine rappresentano componenti sottostimate e poco studiate della criosfera[1][2]. Questi ambienti preservano depositi di ghiaccio perenni che costituiscono archivi climatici di grande valore scientifico, la cui esistenza è sempre più minacciata dai cambiamenti climatici[3][4].

Le grotte di ghiaccio si trovano tipicamente in zone di permafrost alpino[1] e sono caratterizzate da condizioni termiche particolari. Gli studi nelle Alpi europee hanno documentato tendenze di riscaldamento statisticamente significative di circa 0,2°C per decennio nelle ultime due decadi (2000-2020) nelle temperature dell’aria delle grotte[5].

Metodologie di Monitoraggio delleio

Il monitoraggio a lungo termine delle grotte di ghiaccio utilizza diverse metodologie avanzate:

Tecniche di Rilevamento:

  • Scansione laser terrestre (TLS) per mappature 3D accurate con precisione sub-centimetrica[3][6]
  • Structure from Motion-Multi-View Stereo (SfM-MVS) combinato con georadar (GPR)[6]
  • Reti di ablazione con paline di misurazione[7]
  • Monitoraggio micrometerologico continuo[8]

Approccio Multi-Temporale:
Le acquisizioni vengono tipicamente effettuate durante le stagioni di ablazione (luglio-ottobre) per calcolare in modo affidabile i bilanci di massa stagionali e annuali[6].

Importanza Paleoclimatica

I depositi di ghiaccio nelle grotte preservano archivi plurisecolari o millenari delle precipitazioni solide invernali[4]. La datazione di macro-resti organici intrappolati negli strati di ghiaccio permette di determinare i tempi e la durata dei periodi passati di bilancio di massa positivo e negativo[4].

Studi comparativi su otto grotte nelle Alpi austriache hanno dimostrato che i periodi di bilancio di massa positivo coincidono con gli avanzamenti glaciali del passato[4]. Sono stati identificati strati ricchi di materiale organico datati all’Anomalia Climatica Medievale (850-1200 d.C.)[4].

Sensibilità ai Cambiamenti Climatici

Le grotte di ghiaccio mostrano una particolare sensibilità climatica. Nelle Alpi giuliane, studi recenti hanno documentato tre fasi principali di probabile bilancio positivo del ghiaccio intorno al 900-1100 d.C., 1200-1300 d.C. e 1700-1800 d.C., oltre a un periodo di bilancio negativo intorno al 1300-1400 d.C.[9].

Il bilancio positivo è associato a periodi caratterizzati da estati più fresche della media e primavere più umide, mentre il bilancio negativo corrisponde a periodi con estati più calde e primavere secche[9].

Processi Micrometerologici

Il bilancio energetico delle grotte di ghiaccio è determinato principalmente dall’input di radiazione a onde lunghe proveniente dalla superficie rocciosa circostante[10]. I flussi turbolenti in media sottraggono energia dalla superficie, fenomeno più pronunciato durante l’inverno a causa della ventilazione dinamica intensificata[10].

Le grotte presentano tipicamente un regime di ventilazione dinamica con periodi invernali ed estivi ben distinti[10][7]. I sistemi di flusso catabatico che si sviluppano sui campi di ghiaccio mostrano dinamiche temporali e spaziali complesse, influenzando significativamente il bilancio energetico superficiale[8].

Sfide e Prospettive Future

Il monitoraggio a lungo termine delle grotte di ghiaccio presenta considerevoli sfide logistiche e tecniche. L’acquisizione di dati affidabili in ambienti estremi e di difficile accesso richiede strategie robuste, standard e tracciabilità per l’intera catena di acquisizione dati[11].

Gli eventi climatici estremi, come le precipitazioni record registrate nell’estate 2019 nell’Europa sud-orientale, hanno causato perdite senza precedenti di ghiaccio superficiale e cavernicolo[12], sottolineando l’urgenza di intensificare gli sforzi di monitoraggio e conservazione.

La ricerca sull’Eiskapelle di Wolf, Bauer e Knolle rappresenta quindi un contributo fondamentale alla comprensione dei processi criogenici sotterranei e alla documentazione dei cambiamenti climatici nelle Alpi tedesche attraverso un periodo di osservazione eccezionalmente lungo di 33 anni.

Fonti
[1] Calcium carbonate precipitating extremophilic bacteria in an Alpine ice cave https://www.nature.com/articles/s41598-024-53131-y
[2] Exploring Ice Cave Biodiversity in Northeastern Italy https://www.mdpi.com/1424-2818/16/7/364
[3] Terrestrial laser scanning for 3D mapping of an alpine ice cave https://onlinelibrary.wiley.com/doi/10.1111/phor.12437
[4] Multi-centennial mass balance of perennial ice deposits in Alpine caves mirrors the evolution of glaciers during the Late Holocene https://pmc.ncbi.nlm.nih.gov/articles/PMC9256607/
[5] Climate warming detected in caves of the European Alps https://pmc.ncbi.nlm.nih.gov/articles/PMC11551203/
[6] Long-term mass-balance monitoring and evolution of ice in caves through structure from motion–multi-view stereo and ground-penetrating radar techniques https://journals.sagepub.com/doi/10.1177/03091333211065123
[7] Linkage of cave-ice changes to weather patterns inside and outside the cave Eisriesenwelt (Tennengebirge, Austria) https://tc.copernicus.org/articles/5/603/2011/tc-5-603-2011.pdf
[8] Avalanches and micrometeorology driving mass and energy balance of the lowest perennial ice field of the Alps: a case study https://tc.copernicus.org/articles/13/1247/2019/tc-13-1247-2019.pdf
[9] RADIOCARBON CONSTRAINTS ON PERIODS OF POSITIVE CAVE ICE MASS BALANCE DURING THE LAST MILLENNIUM, JULIAN ALPS (NW SLOVENIA) https://www.cambridge.org/core/product/identifier/S0033822222000261/type/journal_article
[10] The mass and energy balance of ice within the Eisriesenwelt cave, Austria https://tc.copernicus.org/articles/5/245/2011/tc-5-245-2011.pdf
[11] 20 years of mountain permafrost monitoring in the Swiss Alps: key results and major challenges https://meetingorganizer.copernicus.org/EGU2020/EGU2020-10903.html
[12] Unprecedented loss of surface and cave ice in SE Europe related to
record summer rains in 2019 https://tc.copernicus.org/articles/15/2383/2021/tc-15-2383-2021.pdf
[13] Leiobunum religiosum : neu für Deutschland (Arachnida: Opiliones) http://www.arages.de/10.5431/aramit3504
[14] Carabid Beetles: Ecology and Evolution http://link.springer.com/10.1007/978-94-017-0968-2
[15] The Department for Bioarchaeology at the Austrian Archaeological Institute (ÖAI), Austrian Academy of Sciences (ÖAW) http://www.iansa.eu/papers/IANSA-2019-02-department-for-bioarchaeology-austrian-archaeological-institute.pdf
[16] Transport of Colloidal and Solute Tracers in Three Different Types of Alpine Karst Aquifers — Examples from Southern Germany and Slovenia http://ascelibrary.org/doi/abs/10.1061/40796%28177%2941
[17] Cave Levels in the Dachstein Massif (Eastern Alps) https://sciendo.com/pdf/10.17738/ajes.2023.0009
[18] Biospeleological activities in Central Europe – A status report https://subtbiol.pensoft.net/article/13297/download/pdf/
[19] Cave finds indicate elk (Alces alces) hunting during the Late Iron Age in the Bavarian Alps https://egqsj.copernicus.org/articles/69/187/2020/egqsj-69-187-2020.pdf
[20] Comparison of overdeepened structures in formerly glaciated areas of the northern Alpine foreland and northern central Europe https://egqsj.copernicus.org/articles/72/23/2023/egqsj-72-23-2023.pdf
[21] A pan-European dataset revealing variability in lithic technology, toolkits, and artefact shapes ~15-11?kya https://pmc.ncbi.nlm.nih.gov/articles/PMC10484899/
[22] Holocene climate change, permafrost and cryogenic carbonate formation: insights from a recently deglaciated, high-elevation cave in the Austrian Alps https://cp.copernicus.org/articles/10/1349/2014/cp-10-1349-2014.pdf
[23] Seismological and Geophysical Signatures of the Deep Crustal Magma Systems of the Cenozoic Volcanic Fields Beneath the Eifel, Germany https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2020GC009062
[24] A later fifth-millennium cal BC tumulus at Hofheim-Kapellenberg, Germany https://www.cambridge.org/core/services/aop-cambridge-core/content/view/AF39B18E580853C5CE1FCFEFC5F7CE4B/S0003598X20000794a.pdf/div-class-title-a-later-fifth-millennium-cal-bc-tumulus-at-hofheim-kapellenberg-germany-div.pdf
[25] Correlations of cave levels, stream terraces and planation surfaces along the River Mur—Timing of landscape evolution along the eastern margin of the Alps https://pmc.ncbi.nlm.nih.gov/articles/PMC3182316/
[26] Micromorphology and Site Formation at Hohle Fels Cave, Schwabian Jura, Germany https://www.eg-quaternary-sci-j.net/53/1/2003/egqsj-53-1-2003.pdf
[27] First direct evidence of lion hunting and the early use of a lion pelt by Neanderthals https://pmc.ncbi.nlm.nih.gov/articles/PMC10570355/
[28] The Erdmannshöhle near Hasel, SW Germany: karst environment and cave evolution https://link.springer.com/10.1186/s00015-020-00363-5
[29] Human exposure to radon radiation geohazard in Rong Cave, Dong Van Karst Plateau Geopark, Vietnam https://vjs.ac.vn/index.php/jse/article/view/11092
[30] 17th INTERNATIONAL CONGRESS OF SPELEOLOGY https://www.semanticscholar.org/paper/178f8161918a98014cb928fbed62853ae50d455b
[31] Preserving the Knowledge of the Past Through Virtual Visits: From 3D Laser Scanning to Virtual Reality Visualisation at the Istanbul Çatalca ?nce?iz Caves https://link.springer.com/10.1007/s41064-020-00091-3
[32] Geophysical cave detection with a portable Very Low Frequency (VLF) radio transmitter https://www.semanticscholar.org/paper/1ddb7bdd9c952a65bf8d20361a80ccf278dda401
[33] Diatoms from Mammoth Cave, Kentucky http://scholarcommons.usf.edu/ijs/vol1/iss4/7/
[34] Karst genesis of the Swabian Alb, South Germany, since the Pliocene : (Climate changes – The Karst Record II, Czech Republic, Poland and Slovakia, July 27-August 9, 2000) https://www.semanticscholar.org/paper/d2ab6b039fa22589c8d8798270a343d3601cd7d3
[35] RECOGNITION OF PLANETARY ROCKS AND MINERALS USING DEEP LEARNING BASED MULTI-SPECTRAL UNMIXING AND A CUSTOM MINERALOGICAL DATABASE https://www.semanticscholar.org/paper/1e3a9cacafabd570af97736bdee9753c4aa53795
[36] RECOGNISING PLANETARY ROCKS AND MINERALS BY COMBINING A CUSTOM MINERALOGICAL DATABASE WITH DEEP LEARNING BASED MULTI-SPECTRAL UNMIXING. I. https://www.semanticscholar.org/paper/633884d40ab4513e546c628ee5802dbd4804d2b9
[37] The Age of the Kirkdale Cave Palaeofauna https://www.semanticscholar.org/paper/0946ebc7fa72247ae3dd96024ba78feba8a139fc
[38] Late Cretaceous to Paleogene exhumation in central Europe – localized inversion vs. large-scale domal uplift https://se.copernicus.org/articles/12/935/2021/se-12-935-2021.pdf
[39] Two Iron-Age Settlement Sites in Germany: From Field Work via Numerical Modeling towards an Improved Interpretation http://www.scirp.org/journal/PaperDownload.aspx?paperID=52671
[40] Late Pleistocene Hystrix (Acanthion) brachyura Linnaeus 1758 from the Fuchsluken Cave Near Saalfeld (Thuringia, Germany) – A Porcupine and Hyena Den and Contribution to their Palaeobiogeography in Europe http://benthamopen.com/contents/pdf/TOPALOJ/TOPALOJ-2-1.pdf
[41] Geoarchaeological prospection in the loess steppe: Preliminary results from the Lower Danube Survey for Paleolithic Sites (LoDanS) https://zenodo.org/record/260003/files/12820432_Geoarchaeological_prospection_in_the_loe.pdf
[42] Landscape modification by Last Interglacial Neanderthals https://pmc.ncbi.nlm.nih.gov/articles/PMC8673775/
[43] The Lower Paleolithic Engravings of Bilzingsleben, Germany https://www.mdpi.com/2673-8392/4/2/43/pdf?version=1713860465
[44] Alpenatlas—Atlas des Alpes—Atlante delle Alpi—Atlas Alp—Mapping the Alps: Society—Economy—Environment https://bioone.org/journals/mountain-research-and-development/volume-29/issue-3/mrd.mm057/AlpenatlasAtlas-des-AlpesAtlante-delle-AlpiAtlas-AlpMapping-the-Alps-SocietyEconomyEnvironment/10.1659/mrd.mm057.full
[45] Can we separate the sinners from the scapegoats? https://onlinelibrary.wiley.com/doi/10.1111/j.1469-1795.2011.00510.x
[46] Participatory Geomonitoring for Future Mining—Resilience Management in the Cavern Storage Epe (Germany) https://www.mdpi.com/2673-6489/4/2/14/pdf?version=1713255786
[47] Monitoring of thermal conditions and snow dynamics at periglacial block accumulations in a low mountain range in central Germany https://onlinelibrary.wiley.com/doi/10.1002/esp.5998
[48] Deglaciation of a large piedmont lobe glacier in comparison with a small mountain glacier – new insight from surface exposure dating. Two studies from SE Germany https://www.eg-quaternary-sci-j.net/60/18/2011/egqsj-60-18-2011.pdf
[49] Climate Variability in Central Europe during the Last 2500 Years Reconstructed from Four High-Resolution Multi-Proxy Speleothem Records https://www.mdpi.com/2076-3263/11/4/166/pdf
[50] Revisiting Late Pleistocene glacier dynamics north-west of the Feldberg, southern Black Forest, Germany https://egqsj.copernicus.org/articles/69/61/2020/egqsj-69-61-2020.pdf
[51] New insights into one of the oldest glacial deposits in the northern Alpine foreland (Höchsten, SW Germany) https://onlinelibrary.wiley.com/doi/10.1111/bor.12684
[52] Experimental study on ice monitoring method for 10 kV transmission line with tangent tower in alpine landform https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/hve2.12372
[53] Comparison of Non-Contact Measurement Technologies Applied on the Underground Glacier – The Choice for Long-Term Monitoring of Ice Changes in Dobšiná Ice Cave https://www.mdpi.com/2072-4292/16/20/3870
[54] The tale of an ice-preserved Alpine Long-Eared Bat in the Pyrenees https://secemu.org/wp-content/uploads/2023/09/Galan_et_al_2022.pdf
[55] Preliminary estimate of current ice thickness in the Dobšiná Ice Cave by means of geophysical and geodetic methods https://journal.geo.sav.sk/cgg/article/view/547
[56] Stable isotope ratios and speleothem chronology from a high-elevation alpine cave, southern San Juan Mountains, Colorado (USA): Evidence for substantial deglaciation as early as 13.5 ka http://www.aimspress.com/article/10.3934/geosci.2019.1.41
[57] Temperature and precipitation signal in two Alpine ice cores over the period 1961–2001 https://cp.copernicus.org/articles/10/1093/2014/cp-10-1093-2014.pdf
[58] Seasonal Freeze?Thaw Cycles and Permafrost Degradation on Mt. Zugspitze (German/Austrian Alps) Revealed by Single?Station Seismic Monitoring https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2021GL094659
[59] Observed snow depth trends in the European Alps: 1971 to 2019 https://tc.copernicus.org/articles/15/1343/2021/tc-15-1343-2021.pdf
[60] Temperature and mineral dust variability recorded in two low-accumulation Alpine ice cores over the last millennium https://www.clim-past.net/14/21/2018/cp-14-21-2018.pdf
[61] Alpine Glaciology: An Historical Collaboration between Volunteers and Scientists and the Challenge Presented by an Integrated Approach https://www.mdpi.com/2220-9964/2/3/680/pdf?version=1375693518
[62] Multi-decadal observations in the alps reveal less and wetter snow, with increasing variability https://www.frontiersin.org/articles/10.3389/feart.2023.1165861/full
[63] Committed Ice Loss in the European Alps Until 2050 Using a Deep?Learning?Aided 3D Ice?Flow Model With Data Assimilation https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2023GL105029
[64] Integrating science and engineering to solve Karst problems http://link.springer.com/10.1007/s13146-012-0111-8
[65] Metamorphic Remnants of the Variscan Orogeny across the Alps and Their Tectonic Significance https://www.mdpi.com/2076-3263/13/10/300/pdf?version=1696756859
[66] Paleoclimate in continental northwestern Europe during the Eemian and earlyWeichselian (125–97 ka): insights from a Belgian speleothem https://www.clim-past.net/12/1445/2016/cp-12-1445-2016.pdf
[67] Impact of an 0.2?km3 Rock Avalanche on Lake Eibsee (Bavarian Alps, Germany) – Part I: Reconstruction of the paleolake and Effects of the Impact https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/esp.5024
[68] Glaciogenic Periglacial Landform in the Making – Geomorphological Evolution of a Rockfall on a Small Glacier in the Horlachtal, Stubai Alps, Austria https://www.mdpi.com/2072-4292/15/6/1472/pdf?version=1678158990
[69] Depositional architecture and palaeogeographic significance of Middle Pleistocene glaciolacustrine ice marginal deposits in northwestern Germany: a synoptic overview https://www.eg-quaternary-sci-j.net/60/16/2011/egqsj-60-16-2011.pdf
[70] Conference review: On melting ground. Arctic Archaeology https://polf.copernicus.org/articles/91/1/2023/polf-91-1-2023.pdf
[71] Revisiting the subalpine Mesolithic site Ullafelsen in the Fotsch Valley, Stubai Alps, Austria – new insights into pedogenesis and landscape evolution from leaf-wax-derived n-alkanes, black carbon and radiocarbon dating https://egqsj.copernicus.org/articles/70/171/2021/egqsj-70-171-2021.pdf
[72] The loess landscapes of the Lower Rhine Embayment as (geo-)archeological archives – insights and challenges from a geomorphological and sedimentological perspective https://egqsj.copernicus.org/articles/72/203/2023/egqsj-72-203-2023.pdf
[73] The anomalous polymict ordinary chondrite breccia of Elmshorn (H3?6)—Late reaccretion after collision between two ordinary chondrite parent bodies, complete disruption, and mixing possibly about 2.8?Gyr ago https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/maps.14193
[74] Late Jurassic Initial Development of a Salt?Dominated Fold?And?Thrust Belt: The Inverted Passive Margin of the Eastern Alps (Austria) https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024TC008358
[75] Holocene landscape evolution, palaeoclimate and human impact in the Fotsch Valley, Stubai Alps, Austria: Interrogating biomarkers, stable isotopes, macrofossils and palynological indicators from a subalpine mire archive https://journals.sagepub.com/doi/pdf/10.1177/09596836231176485
[76] A Cryptotephra Layer in Sediments of an Infilled Maar Lake from the Eifel (Germany): First Evidence of Campanian Ignimbrite Ash Airfall in Central Europe https://www.mdpi.com/2571-550X/7/2/17/pdf?version=1711359923
[77] Palaeoseismicity studies on end-Pleistocene and Holocene lake deposits around Basle, Switzerland https://academic.oup.com/gji/article-pdf/149/3/659/5913810/149-3-659.pdf
[78] Magnitude and source area estimations of severe prehistoric earthquakes in the western Austrian Alps https://nhess.copernicus.org/articles/22/2057/2022/nhess-22-2057-2022.pdf
[79] Impact of an 0.2?km3 Rock Avalanche on Lake Eibsee (Bavarian Alps, Germany) – Part II: Catchment Response to Consecutive Debris Avalanche and Debris Flow https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/esp.5025
[80] The evolution and preservation potential of englacial eskers: An example from Breiðamerkurjökull, SE Iceland https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/esp.5664
[81] One Billion Years of Earth History: Challenges of Valorizing the Outstanding Geodiversity of Southwest Germany for Sustainable Geotourism https://www.mdpi.com/2071-1050/14/1/559/pdf
[82] Relation between Central European Climate Change and Eifel Volcanism during the Last 130,000 Years: The ELSA-23-Tephra-Stack https://www.mdpi.com/2571-550X/7/2/21/pdf?version=1714040670
[83] Deciphering the evolution of the Bleis Marscha rock glacier (Val d’Err, eastern Switzerland) with cosmogenic nuclide exposure dating, aerial image correlation, and finite element modeling https://tc.copernicus.org/articles/15/2057/2021/tc-15-2057-2021.pdf
[84] Die bayerischen Gletscher, die verbliebenen Eisreserven Deutschlands https://polf.copernicus.org/articles/89/1/2021/polf-89-1-2021.pdf
[85] Earth-Observation-Based Monitoring of Forests in Germany – Recent Progress and Research Frontiers: A Review https://www.mdpi.com/2072-4292/15/17/4234/pdf?version=1693282834
[86] The potential of new measurement and modelling techniques in alpine cryosphere and geomorphology research https://www.geogr-helv.net/67/26/2012/gh-67-26-2012.pdf
[87] Pilotstudie zu den lokalen Auswirkungen des Klimawandels auf die Forstwirtschaft in ausgewählten Regionen Sachsen-Anhalts http://www.univerlag.uni-goettingen.de/bitstream/3/isbn-978-3-86395-239-6/1/NWFVA13_klimawandel.pdf
[88] The Quaternary of the southwest German Alpine Foreland (Bodensee-Oberschwaben, Baden-Württemberg, Southwest Germany) https://www.eg-quaternary-sci-j.net/60/22/2011/egqsj-60-22-2011.pdf
[89] Thresholds for the presence of glacial megafauna in central Europe during the last 60,000 years https://pmc.ncbi.nlm.nih.gov/articles/PMC9681729/
[90] Eolian sedimentation in central European Auel dry maar from 60 to 13 ka https://www.cambridge.org/core/services/aop-cambridge-core/content/view/1DFF15776B9412E1ACA981C2D2FBFB30/S0033589420000812a.pdf/div-class-title-eolian-sedimentation-in-central-european-auel-dry-maar-from-60-to-13-ka-div.pdf
[91] Der späteiszeitliche Tüttensee-Komplex als Ergebnis der Abschmelzgeschichte am Ostrand des Chiemsee-Gletschers und sein Bezug zum „Chiemgau Impakt“ (Landkreis Traunstein, Oberbayern) https://egqsj.copernicus.org/articles/69/93/2020/egqsj-69-93-2020.pdf
[92] The past is the key to the future – considering Pleistocene subglacial erosion for the minimum depth of a radioactive waste repository https://egqsj.copernicus.org/articles/72/113/2023/
[93] Geowissenschaftliche Methoden – Datenbank (GeM-DB) – a basis for planning surface exploration programs https://sand.copernicus.org/articles/2/55/2023/sand-2-55-2023.pdf
[94] Sediment Input into the Heidelberg Basin as determined from Downhole Logs https://www.eg-quaternary-sci-j.net/57/367/2009/egqsj-57-367-2009.pdf
[95] Fluvial activity of the late-glacial to Holocene “Bergstraßenneckar” in the Upper Rhine Graben near Heidelberg, Germany – first results https://egqsj.copernicus.org/articles/71/213/2022/egqsj-71-213-2022.pdf
[96] Late Pleistocene glaciation history of the southern Black Forest, Germany: 10Be cosmic?ray exposure dating and equilibrium line altitude reconstructions in Sankt Wilhelmer Tal https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jqs.3407
[97] Ice aprons on steep high-alpine slopes: insights from the Mont-Blanc massif, Western Alps https://www.cambridge.org/core/product/identifier/S0022143023000151/type/journal_article
[98] The Monica (Monitoring Of Ice Within Caves) Project: A Multidisciplinary Approach For The Geophysical And Paleoclimatic Characterization Of Permanent Ice Deposits In The Southeastern Alps https://www.semanticscholar.org/paper/c700853cb968c93bd69447df3bcca51443b2e867
[99] Dialektik der Erschließung: The German–Austrian Alps between Exploration and Exploitation https://www.mdpi.com/2076-0787/10/1/17
[100] Anhydrite Weathering Zone with Hydration Caves at Dingwall (Nova Scotia, SE Canada) as a Potential Geosite and Geodiversity Site https://link.springer.com/10.1007/s12371-023-00797-x
[101] Atmospheric ice nucleators active ? -12°C can be quantified on PM10 filters https://www.semanticscholar.org/paper/945d281e96d4df74b4557609ab4aee3b456c99a3
[102] Talus-and-gorge ice caves in the northeastern United States past to present—A microclimatological study https://caves.org/pub/journal/PDF/V79/79_3_179.pdf
[103] A paleoprecipitation and paleotemperature reconstruction of the Last Interglacial in the southeastern Alps https://cp.copernicus.org/articles/19/1177/2023/
[104] 19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers https://tc.copernicus.org/articles/12/3311/2018/tc-12-3311-2018.pdf